Remedial and Treatment Techniques

Shibogama First Nations Council – Technical Services

Remediation: Common Approaches

Two general categories of remediation:

- * In-Situ remediation/management of contaminant in place.
- * Ex-Situ removal of contaminant and remediation/management at a different location.

Treatment Options

- * In-Situ vs. Ex-situ depends on a number of technical and social and economic considerations including the following:
 - * Type of soils (e.g. sand/clay/silt).
 - * Depth of contamination.
 - * Structures on or near the site.
 - * Community Concerns.
 - Presence/absence of liquid phase hydrocarbons.

Common In-Situ Treatments

Common In-Situ Remediation Approaches

- * **Bioremediation** promote degradation of contaminant by stimulating naturally occurring micro-organisims.
- * Oxidation- Using a chemical oxidant to breakdown contaminants.

In-Situ Treatment

- * Natural Attenuation relying on naturally occurring physical, chemical, and biological processes to reduce contaminate.
- * "Pump and Treat" Removal and treatment of contaminated groundwater (e.g. use of Granulated Activated Carbon filtration system)

In-Situ Remediation

Photo courtesy of True Grit Consulting Ltd.

Injection of Oxygen-Releasing Compound

Photo courtesy of True Grit Consulting Ltd.

In-Situ Treatment

* Advantages

- * Less-disruptive
- Can be used around/ beneath structures and utilities
- * Can reach deep impact.

* Disadvantages

- More difficult/takes longer to achieve remedial objectives
- Less useful in low permeability soils (clays/silts).

Ex-Situ Remediation

- * Off-site disposal removal of contamination from site, and relocation to a licensed facility (e.g. landfill) for treatment.
- * Bioremediation relocation of contaminated material to a local treatment facility (Biocell), constructed for the purpose of treating impacted soil. Involves the promotion the growth of naturally occurring microorganisms to promote degradation of contaminants.

Ex-Situ Remediation: Biocell

Ex-Situ Treatment Regime

- * May include regular:
 - * Addition of ORC's (Oxygen releasing compounds).
 - * Addition of nutrients to encourage biological activity.
 - * Manual "tilling" of soil with an excavator.
 - * Regular soil and water testing to monitor progress.
 - * Water treatment/removal.

Resource Requirement for Ex-Situ Remediation

- * Heavy equipment
 - * Bulldozer
 - * Loader
 - * Excavator
 - * Haulage Trucks

- * Local labourers/ equipment operators.
- * Backfill (to replace excavated soil)

Ex-Situ Treatment

Advantages

- * Immediate and confirmable achievement of remedial objectives at site.
- * Risks of exposure to individuals is reduced.

Disadvantages

- * Disruptive.
- * Depth limited.
- * May not complete groundwater remediation.
- * Movement of contaminated soil to another location.

Ex-Situ Remediation

Photo courtesy of True Grit Consulting

Ex-Situ Remediation

Photo courtesy of True Grit Consulting

Site Restoration

Photo courtesy of True Grit Consulting Ltd.

Remediation

- * It is common for a combined approach to be used (ex-situ and in-situ)
- * For accessible soils, remedial excavation and ex-situ treatment is used for accessible soils.
- * For inaccessible soils, In-Situ treatment is used.

Remediation Timelines

Ex-Situ (Biocell)

- * 2-3 years.
- * Treated soil used for landfill cover.

In-Situ

- * 3-5 years.
- * Treated soil left in place.

Thank You

for assisting STS with information and images for this presentation.

NOFNEC delegates